The way to solve this problem is by trial and error!
(a)⟷(3): We have
∂x∂(4x3−3x)∂x2∂2(4x3−3x)=12x2−3=24x Then we can see that
(1−x2)∂x2∂2f−x∂x∂f=(1−x2)(24x)−x(12x2−3)=24x−24x3−12x3+3x=−36x3+27x=−9(4x3−3x) Therefore the eigenvalue is λ=−9.
(b,c)⟷(5): We have
∂x2∂2(e8x+e−8x)=∂x∂(8e8x−8e−8x)=64e8x+64e−8x=64(e8x+e−8x) Therefore the eigenvalue is λ=64.
Because the function is an eigenfunction of ∂x2∂2, it is trivially also an eigenfunction of ∂x4∂4 but with the eigenvalue is λ2=212.
(b,c)⟷(1): We have
∂x2∂2(sin(−2x)+cos(2x))=∂x∂(−2cos(−2x)−2sin(2x))=−4sin(−2x)−4cos(2x)=−4(sin(−2x)+cos(2x)) Therefore the eigenvalue is λ=−4.
Because the function is an eigenfunction of ∂x2∂2, it is trivially also an eigenfunction of ∂x4∂4 but with the eigenvalue is λ2=16.
(d)⟷(2): We have
∂x∂(4x4−12x2+3)∂x2∂2(4x4−12x2+3)=16x3−24x=48x2−24 Then we can see that
∂x2∂2f−2x∂x∂f=48x2−24−2x(16x3−24x)=48x2−24−32x4+48x2=−32x4+96x2−24=−8(4x4−12x2+3) Therefore the eigenvalue is λ=−8.
(e)⟷(4): We have
∂x∂(x2−4x+2)∂x2∂2(x2−4x+2)=2x−4=2 Then we can see that
x∂x2∂2f+(1−x)∂x∂f=2x+(1−x)(2x−4)=2x−2x2+6x−4=−2x2+8x−4=−2(x2−4x+2) Therefore the eigenvalue is λ=−2.